

2025 Water Quality Report

Data Collected in 2024

J. Wayne Miller, Ph.D., Water Treatment Plant

The Yorba Linda Water District is pleased to distribute this report to its water customers. It provides important information about where your water comes from and the work we perform each day, ensuring the water delivered to your tap is safe to drink. It also provides data about what is in your water and how water quality tests performed on your drinking water compare to federal and state drinking water standards from **January 2024 to December 2024.**

Your 2025 Water Quality

Since 1990, California public water utilities have provided annual Water Quality Reports to their customers. This year's report, also known as the "Consumer Confidence Report," covers water quality testing from January to December 2024, unless otherwise specified.

The Yorba Linda Water District's (YLWD/District) annual Water Quality Report is prepared in compliance with the regulations called for in the 1996 reauthorization of the Safe Drinking Water Act (SDWA). The reauthorization charged the United States Environmental Protection Agency (USEPA) with updating and strengthening the tap water regulatory program. USEPA and the State Water Resources Control Board, Division of Drinking Water (DDW), are responsible for establishing water quality standards.

To ensure that your tap water is safe to drink, USEPA and DDW prescribe regulations that limit the amount of specific contaminants in water provided by water systems. The state and federal governments require that this annual Water Quality Report be provided to every customer to ensure you are informed of your water quality. As in years past, the water delivered to your home meets or exceeds the standards required by the state and federal regulatory agencies.

In 2024, we conducted over 23,000 analyses and are proud to report that our water system has always complied with state and federal drinking water regulations and water quality standards. In some cases, we go beyond what is required by providing additional monitoring for contaminants that may have health risks.

We Invite You to Learn More About Our District

The Board of Directors invites the public to participate in its meetings. Regular meetings are generally held on the second and fourth Thursday of each month at 8:30 a.m. and are held at the District's Administration building located at 1717 East Miraloma Avenue in Placentia. Meetings are available online via Zoom.

For more information about the District or your water service, please visit our website at www.ylwd.com or call (714) 701-3000.

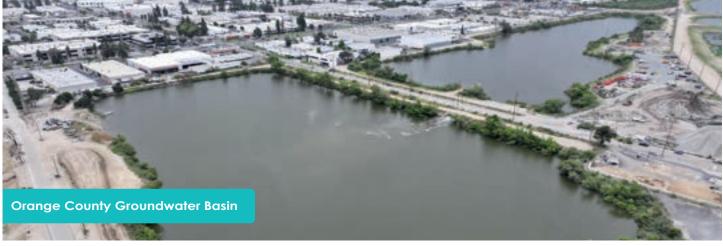
Sources of Water Supply

Introduction

Your drinking water is constantly monitored from source to tap for both regulated and unregulated contaminants. Drinking water quality testing programs are carried out by the following agencies: Orange County Water District (OCWD) for groundwater, Metropolitan Water District of Southern California (MWD) for treated surface water, and Yorba Linda Water District for the drinking water distribution system.

Sources of Supply

The District's water supply consists of groundwater from the Orange County Groundwater Basin and water imported from Northern California and the Colorado River by MWD.


Local Groundwater

Groundwater is sourced from the Orange County Groundwater Basin, a natural aquifer beneath most of northern and central Orange County, which covers an area of approximately 270 square miles. The Yorba Linda Water District, along with 18 other cities and retail water districts, pumps from the groundwater basin to supply water to homes and businesses. We treat local groundwater to drinking water standards at our state-of-the-art PFAS water treatment plant in Placentia. We disinfect the groundwater entering the distribution system. On average, 85% of the water served to our customers is treated groundwater.

Source Water Assessment: Groundwater

Vulnerability assessments of potential sources of contamination for YLWD's Wells 21 and 22 were conducted in September 2014 and June 2018, respectively. The groundwater sources considered most vulnerable to the following activities not associated with detected contaminants: chemical / petroleum processing / storage facilities; historic gas stations; metal plating / finishing / fabricating plants; automobile repair shops; furniture repair and manufacturing; junk / scrap / salvage yards; machine shops; National Pollutant Discharge Elimination System / Waste Discharge Requirement (NPDES/WDR) permitted discharges; processing / printing; recreational area surface water use; sewer collection systems; oil wells; gas stations; plastic / synthetic producers; above ground storage tanks; artificial recharge projects using non-potable water; car washes; construction / demolition staging areas; dredging; hardware / lumber / part stores; parking lots; transportation corridors; water supply wells; body shops, automobile repair shops; electrical / electronic manufacturing; fleet / truck / bus terminals; dry cleaners; appliance / electronic repair; medical / dental offices / clinics; office buildings; water: decommissioned underground storage tanks; upgraded and/or registered underground storage tanks; monitoring wells; hospitals, and parks.

In June 2011, a vulnerability assessment of potential sources of contamination for Well 20 was conducted. This groundwater source is considered most

vulnerable to the following activities not associated with detected contaminants: machine shops; sand and gravel mining; NPDES/WDR permitted discharges; recreational area surface water use; sewer collection systems; oil wells; gas stations; chemical / petroleum processing / storage facilities; metal plating / finishing / fabricating plants; and plastic / synthetic producers.

Wells 19 and 18's vulnerability assessments of potential sources of contamination were completed in May 2004 and September 2005, respectively. The aroundwater sources are considered most vulnerable to the following activities not associated with detected contaminants: gas stations; dry cleaners; metal plating / finishing / fabricating plants; plastic / synthetic producers; underground injection of commercial / industrial discharges; underground storage tanks; agricultural drainage; fertilization, pesticide and herbicide application; automobile body and repair shops; sewer collection systems; food processing, and chemical / petroleum processing / storage.

The District completed an assessment of its Wells 1, 5, 7, 10, and 12 in January 1999. The wells are considered most vulnerable to contaminants produced by the following activities: gas stations; dry cleaners; metal plating / finishing / fabricating plants; plastic / synthetic producers; underground injection of commercial / industrial discharges; underground storage tanks; agricultural drainage; fertilization, pesticide and herbicide application; automobile body and repair shops; and chemical / petroleum processing / storage.

Copies of the assessments are available at YLWD at 1717 E. Miraloma Ave, Placentia, CA 92870 or State Water Resources Control Board, Division of Drinking Water at 2 MacArthur Place, Suite 150, Santa Ana, CA 92707. You may request a summary of the assessment be sent to you by contacting State Water Resources Control Board, Division of Drinking Water District Engineer or YLWD Water Quality Division at (714) 701-3000.

Imported Water

Approximately 15% of the water served to our customers is treated imported water. The District obtains imported water from Northern California via the State Water Project and from the Colorado River

via the MWD-owned and operated Colorado River Aqueduct. This water is treated by MWD at the Robert B. Diemer Water Treatment Plant in Yorba Linda. MWD treats the water to meet drinking water standards and disinfects the water.

Source Water Assessment: Imported Water

Every five years, DDW requires MWD to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters. The most recent surveys for MWD's source waters are the Colorado River Watershed Sanitary Survey – 2020 Update, and the State Water Project Watershed Sanitary Survey – 2021 Update. Water from the Colorado River is most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Likewise, water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater. USEPA also requires MWD to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWD completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed.

A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWD at (800) 225-5693.

The Source of Your Water Can Change Throughout the Year

Your water source depends on where you live or work within the boundaries of our service area. To maximize the delivery of groundwater, which costs significantly less than imported water, we may change our operating dynamics, resulting in a source water change from imported water to groundwater at different times throughout the year. Since the water sources may vary, you may notice a difference in the water's taste or hardness (mineral content). However, none of these factors affect the quality and safety of your water.

YLWD's Response to EPA's Updated Drinking Water Standard for PFAS

On April 10, 2024, the USEPA released the updated drinking water standards for a category of contaminants called Per- and polyfluoroalkyl substances (PFAS), also known as "forever chemicals." These new regulations impact all water agencies providing water for public use. The Yorba Linda Water District has been proactive in addressing PFAS found in our local groundwater in anticipation of USEPA's announcement.

The District has continually safeguarded its water supply and ensured safe drinking water is delivered to customers. YLWD established a partnership with Orange County Water District to develop a plan for funding, constructing, and operating a state-of-the-art treatment facility to remove these contaminants from our drinking water. Operational since December 2021, YLWD's J. Wayne Miller, Ph.D., Water Treatment Plant has the capacity to treat up to 25 million gallons of groundwater every day. The water supply from this \$27.7 million plant meets or exceeds all state and federal standards for drinking water, including the new standards set by the USEPA.

The Yorba Linda Water District takes great pride in prioritizing the well-being of our community. Innovative and valuable projects like our PFAS water treatment plant ensure that YLWD continues to deliver clean, safe, and reliable drinking water to our customers every day.

To Safeguard Against Issues that May Affect Your Health

We Comply With All State and Federal Water Quality Regulations

Basic Information About Drinking Water Contaminants

The sources of drinking water (both public tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and groundwater. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals. Water also picks up substances resulting from animals or from human activity. Therefore, drinking water, including bottled water may reasonably be expected to contain at least small amounts of some contaminants. However, contaminant presence does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Contaminants that may be present in source water include:

- ▲ Microbial contaminants, such as viruses and bacteria are microscopic organisms that come from sewage treatment plants, livestock operations, wildlife and Cryptosporidium and Giardia are human waste. examples of bacteria that may be found in surface waters such as rivers and lakes (imported water). These contaminants can cause diarrhea, fever, and other gastrointestinal maladies when ingested. standard treatment processes that include sedimentation, filtration, and disinfection, such as provided by MWD, can eliminate these contaminants.
- ♦ Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses:
- ♦ Inorganic contaminants, such as salts and metals that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- ♦ Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems;
- ◆ Radioactive contaminants that naturally exist or result from oil and gas production and mining activities.

Special Risk Populations

Some people may be more vulnerable to contaminants in drinking water than the general

population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Arsenic

While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The USEPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Fluoride

Naturally occurring fluoride is present in the Orange County Groundwater Basin. In 1995, the California Legislature passed a bill mandating all large water agencies to fluoridate their supplies, but only if the state or another entity provides the agencies with funding. To date, the state has not appropriated funds to implement fluoridation. As a result, the District does not add fluoride to groundwater. MWD

began fluoridation of the drinking water it imports to Southern California in November of 2007. Both water sources contain fluoride. If you wish to know the approximate level of fluoride in your tap water or specific water service area, please call the District at (714) 701-3000 and ask for the Water Quality Division.

Additional information about the fluoridation of drinking water can be found through the following sources:

U.S. Centers for Disease Control and Prevention www.cdc.gov/fluoridation • 1-888-CDC-INFO (1-888-232-4636)

State Water Resources Control Board, Division of Drinking Water

<u>www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.html</u>

American Dental Association

www.ada.org/en/public-programs/advocating-for-the-public/fluoride-and-fluoridation/ada-fluoridation-resources

American Water Works Association www.awwa.org

Lead Service Line Initial Inventory

YLWD has completed the Lead Service Line Initial Inventory (LSLI) required by USEPA's Lead and Copper Rule Revisions (LCRR) and has determined it has no lead or galvanized material requiring replacement of service lines in its distribution system. Please visit www.ylwd.com/waterquality for more information.

About Lead in Tap Water

Lead can cause serious health effects in people of all ages, especially pregnant women, infants, and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing.

The Yorba Linda Water District is responsible for providing high quality drinking water and removing lead service lines, but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes.

If you have lead or galvanized material in your home plumbing, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact YLWD's Water Quality Division at (714) 701-3000. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at www.epa.gov/safewater/lead.

Where Can You Learn More?

For more information about Drinking Water Quality and general water issues, visit these sites:

- United States Environmental Protection Agency: Sets the Federal Drinking Water Standards, https://www.epa.gov/
- California Department of Water Resources: Sets the State Drinking Water Standards, https://water.ca.gov/
- Metropolitan Water District of Southern California via Municipal Water District of Orange County: Imported Water Supply Source, https://www.mwdh2o.com/ or https://www.mwdh2o.com/
- Orange County Water District: Groundwater Supply Source, https://www.ocwd.com/

2024 Metropolitan Water District of Southern California Treated Surface Water

Chemical	MCL	PHG (MCLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Chemical		
Radiologicals - Tested in 2023 and 2024								
Gross Alpha Particle Activity (pCi/L)	15	(O)	ND	ND – 5	No	Erosion of Natural Deposits		
Gross Beta Particle Activity (pCi/L)	50	(O)	4	ND - 5	No	Decay of Natural and Man-made Deposits		
Uranium (pCi/L)	20	0.43	1	ND – 3	No	Erosion of Natural Deposits		
Inorganic Chemicals – Tested in 2024								
Aluminum (ppm)	1	0.6	ND	ND - 0.11	No	Treatment Process Residue, Natural Deposits		
Barium (ppm)	1	2	0.124	0.124	No	Refinery Discharge, Erosion of Natural Deposits		
Bromate (ppb)	10	0.1	ND	ND – 1.6	No	Byproduct of Drinking Water Ozonation		
Fluoride (ppm)	2	1	0.7	0.6 – 0.8	No	Water Additive for Dental Health		
Secondary Standards* – Tested in 20	024							
Aluminum (ppb)	200*	600	ND	ND – 110	No	Treatment Process Residue, Natural Deposits		
Chloride (ppm)	500*	n/a	104	93 – 116	No	Runoff or Leaching from Natural Deposits		
Color (color units)	15*	n/a	2	1 – 2	No	Naturally-occurring Organic Materials		
Odor (threshold odor number)	3*	n/a	1	1	No	Naturally-occurring Organic Materials		
Specific Conductance (µmho/cm)	1,600*	n/a	979	888 – 1,070	No	Substances that Form Ions in Water		
Sulfate (ppm)	500*	n/a	224	196 – 253	No	Runoff or Leaching from Natural Deposits		
Total Dissolved Solids (ppm)	1,000*	n/a	621	556 – 686	No	Runoff or Leaching from Natural Deposits		
Unregulated Chemicals – Tested in 2	2024							
Alkalinity, total as CaCO3 (ppm)	Not Regulated	n/a	114	105 – 123	n/a	Runoff or Leaching from Natural Deposits		
Boron (ppm)	NL=1	n/a	0.14	0.14	n/a	Runoff or Leaching from Natural Deposits		
Calcium (ppm)	Not Regulated	n/a	68	58 – 78	n/a	Runoff or Leaching from Natural Deposits		
Hardness, total as CaCO3 (ppm)	Not Regulated	n/a	270	235 – 305	n/a	Runoff or Leaching from Natural Deposits		
Hardness, total (grains/gallon)	Not Regulated	n/a	16	14 – 18	n/a	Runoff or Leaching from Natural Deposits		
Magnesium (ppm)	Not Regulated	n/a	26	22 – 29	n/a	Runoff or Leaching from Natural Deposits		
pH (pH units)	Not Regulated	n/a	8.2	8.2	n/a	Hydrogen Ion Concentration		
Potassium (ppm)	Not Regulated	n/a	4.9	4.4 – 5.4	n/a	Runoff or Leaching from Natural Deposits		
Sodium (ppm)	Not Regulated	n/a	103	90 – 116	n/a	Runoff or Leaching from Natural Deposits		
Total Organic Carbon (ppm)	TT	n/a	2.4	2 – 2.5	n/a	Various Natural and Man-made Sources		

ppb = parts per billion; ppm = parts per million; pCi/L = picoCuries per liter; µmho/cm = micromhos per centimeter; ND = not detected; NL = Notification Level; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal; n/a = not applicable; TT = treatment technique

^{*}Chemical is regulated by a secondary standard

Turbidity – combined filter effluent Metropolitan Water District Diemer Filtration Plant	Treatment Technique	Turbidity Measurements	IT Violation?	Typical Source of Chemical
1) Highest single turbidity measurement (NTU)	0.3	0.06	No	Soil Runoff
2) Percentage of samples less than or equal to 0.3 NTU	95%	100%	No	Soil Runoff

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms. Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "treatment technique" (TT): A required process intended to reduce the level of a contaminant in drinking water. NTU = nephelometric turbidity units.

Unregulated Chemicals Requiring Monitoring

Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Lithium (ppb)	n/a	n/a	22	ND - 36	2023

Table Legend

What is a Water Quality Goal?

In addition to mandatory water quality standards, USEPA and the DDW have set voluntary water quality goals for some contaminants. Unfortunately, water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide helpful guidance and directions for water management practices. The charts in this report include three types of water quality goals:

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA. Maximum Residual Disinfectant Level Goal

(MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial

contaminants.

Public Health Goal (PHG): The level of a

contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. What are Water Quality Standards?

Drinking water standards established by the USEPA and DDW set limits for substances that may affect consumer health or aesthetic qualities of drinking

consumer health or aesthetic qualities of drinking water. The charts in this report show the following types of water quality standards:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the door, taste, and appearance of drinking water.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Secondary MCLs: Set to protect drinking water's

affect health, along with their monitoring and

reporting requirements.

Regulatory Action Level (AL): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

Notification Level (NL): The level above which a water agency is required to notify its governing body if an unregulated contaminant is found in its drinking water.

Measurement Information
To ensure that tap water is safe to drink, USEPA and
DDW prescribe regulations that limit the amount of specific contaminants in water provided by public water systems. The U.S. Food and Drug Administration regulations and California law also

establish limits for contaminants in bottled water that provide the same protections for public health. The tables list all the drinking water contaminants that the District detected above the reporting limits during the 2024 calendar year.

odor, taste, and appearance.

Primary Drinking Water Standard: MCLs, MRDLs and treatment techniques (TTs) for contaminants that

8
**The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data

presented in this table is from testing done from January 1 through December 31, 2024. The DDW requires monitoring for specific contaminants less often than every year because the concentration of these contaminants are not expected to vary significantly from year to year. Thus, some of the data, though representative of current water quality, is more than one year old. The District quality, is more than one year old. The District contracts with state-certified, independent laboratories to perform most water quality testing.

How are Contaminants Measured?

Parts per million (ppm) or milligrams per liter

(mg/L) Parts per billion (ppb) or micrograms per liter (µ

g/L)
Parts per trillion (ppt) or nanograms per liter (ng/L)
What Do the Abbreviations Represent?

pCi/L = picoCuries per liter ND = not detected

NTU = nephelometric turbidity units n/a = not applicable

TON = Threshold Odor Number NL = Notification Level

µmho/cm = micromhos per centimeter

2024 Yorba Linda Water District Groundwater Quality

Chemical	MCL	PHG (MCLG)	Average Amount	Range of Detections	MCL Violation?	Most Recent Sampling Date	Typical Source of Chemical
Radiologicals							
Uranium (pCi/L)	20	0.43	7.8	4.8 – 11	No	2024	Erosion of Natural Deposits
Inorganic Chemicals							
Arsenic (ppb)*	10	0.004	4.3	2.7 – 5.9	No	2024	Erosion of Natural Deposits
Barium (ppm)	1	2	ND	ND - 0.112	No	2024	Erosion of Natural Deposits
Hexavalent Chromium (ppb)	10	0.02	0.11	ND - 0.55	No	2024	Erosion of Natural Deposits
Fluoride (ppm)	2	1	0.48	0.42 – 0.56	No	2024	Erosion of Natural Deposits
Nitrate (ppm as N)	10	10	1.19	0.84 - 1.64	No	2024	Fertilizers, Septic Tanks
Nitrate+Nitrite (ppm as N)	10	10	1.19	0.84 – 1.64	No	2024	Fertilizers, Septic Tanks
Secondary Standards**							
Chloride (ppm)	500**	n/a	128	116 – 138	No	2024	Erosion of Natural Deposits
Color (color units)	15**	n/a	ND	ND – 5	No	2024	Naturally-occurring Organic Materials
Manganese (ppb)*	50*	n/a	ND	ND – 4.6	No	2024	Erosion of Natural Deposits
Specific Conductance (µmho/cm)	1,600*	n/a	1,095	942 – 1,210	No	2024	Erosion of Natural Deposits
Sulfate (ppm)	500*	n/a	144	114 – 180	No	2024	Erosion of Natural Deposits
Total Dissolved Solids (ppm)	1000*	n/a	691	598 – 804	No	2024	Erosion of Natural Deposits
Turbidity (NTU)	5**	n/a	ND	ND - 0.15	No	2024	Erosion of Natural Deposits
Unregulated Chemicals***							
Alkalinity, total (ppm as CaCO3)	Not Regulated	n/a	229	199 – 256	n/a	2024	Erosion of Natural Deposits
Bicarbonate (ppm as HCO3)	Not Regulated	n/a	280	242 – 313	n/a	2024	Erosion of Natural Deposits
Boron (ppm)	NL = 1	n/a	0.27	0.25 – 0.29	n/a	2024	Erosion of Natural Deposits
Bromide (ppm)	Not Regulated	n/a	0.16	0.04 - 0.25	n/a	2024	Erosion of Natural Deposits
Calcium (ppm)	Not Regulated	n/a	101	76.9 – 126	n/a	2024	Erosion of Natural Deposits
Hardness, total (grains/gal)	Not Regulated	n/a	20	16 – 25	n/a	2024	Erosion of Natural Deposits
Hardness, total (ppm as CaCO3)	Not Regulated	n/a	347	266 – 430	n/a	2024	Erosion of Natural Deposits
Magnesium (ppm)	Not Regulated	n/a	23.2	18 – 27.9	n/a	2024	Erosion of Natural Deposits
Perfluoro Butane Sulfonic Acid (ppt)*	NL = 500	n/a	ND	ND	n/a	2024	Man-made Sources
Perfluorobutanoic Acid (ppt)*	Not Regulated	n/a	19	12 – 23	n/a	2024	Man-made Sources
Perfluoro Hexane Sulfonic Acid (ppf)*	NL = 3	n/a	ND	ND	n/a	2024	Man-made Sources
Perfluorohexanoic Acid (ppt)*	Not Regulated	n/a	ND	ND - 3.5	n/a	2024	Man-made Sources
Perfluoropentanoic Acid (ppt)*	Not Regulated	n/a	5	3.8 – 6.9	n/a	2024	Man-made Sources
Perfluoro Octane Sulfonic Acid (ppt)*	NL = 6.5	1	ND	ND	n/a	2024	Man-made Sources
Perfluorooctanoic Acid (ppt)*	NL = 5.1	0.007	ND	ND	n/a	2024	Man-made Sources
pH (pH units)	Not Regulated	n/a	7.8	7.7 – 8	n/a	2024	Acidity, hydrogen ions
Potassium (ppm)	Not Regulated	n/a	6	5.3 – 7	n/a	2024	Erosion of Natural Deposits
Sodium (ppm)	Not Regulated	n/a	103	91.8 – 11	n/a	2024	Erosion of Natural Deposits
Total Organic Carbon (ppm)	Not Regulated	n/a	0.96	0.7 – 1.33	n/a	2024	Various Natural and Man-made Sources
Vanadium (ppb)	NL = 50	n/a	4.5	3.7 – 6.6	n/a	2024	Erosion of Natural Deposits; Industrial Discharge

ppb = parts-per-billion; ppm = parts-per-million; ppt = parts-per-trillion; pCI/L = picoCuries per liter; ntu = nephelometric turbidity units; ND = not detected; n/a = not applicable; MCL = Maximum Contaminant Level; (MCLG) = federal MCL Goal; PHG = California Public Health Goal; µmho/cm = micromho per centimeter

Unregulated Chemicals Requiring Monitoring***

Chemical	Notification Level	PHG	Average Amount	Range of Detections	Most Recent Sampling Date
Lithium (ppb)	n/a	n/a	9.9	9.9	2024
Perfluorobutanoic Acid (ppt)	n/a	n/a	19	18 – 21	2024
Perfluorobutanoic Acid (ppt)	n/a	n/a	2.4	2.2 – 2.5	2024
Perfluorobutanoic Acid (ppt)	n/a	n/a	4.8	4.2 – 5.3	2024

^{***}Chemicals for the Unregulated Chemicals Requiring Monitoring table were sampled and tested separately from the 2024 YLWD Groundwater Quality sampling.

^{*}Data from YLWD PFAS water treatment plant effluent. **Contaminant is regulated by a secondary standard to maintain aesthetic qualities (taste, odor, color).

2024 Yorba Linda Water District Distribution System Water Quality

Туре	MCL (MRDL/MRDLG)	Average Amount	Range of Detections	MCL Violation?	Typical Source of Chemical
DISINFECTANT RESIDUAL AND DI	SINFECTION BY- PRODU	JCTS .			
Chlorine Residual (ppm) *	(4 / 4)	1.3	1.09 – 1.4	No	Disinfectant Added for Treatment
Total Trihalomethanes (ppb) **	80	58	23 – 71	No	Byproducts of Chlorine Disinfection
Haloacetic Acids (ppb) **	60	21	4 – 20	No	Byproducts of Chlorine Disinfection
AESTHETIC QUALITY					
Color (color units)	15***	ND	ND – 5	No	Naturally-occuring organic materials
Odor (threshold odor number)	3***	ND	ND – 2	No	Naturally-occuring organic materials
Turbidity (ntu)	5***	ND	ND - 1.1	No	Erosion of natural deposits

Fight locations in the distribution system are tested quarterly for total tribalomethanes and haloacetic acids. Thirty-seven locations are tested monthly for color, odor and -using the state of the state o

Compliance is determined based on a running annual average (RAA); the highest RAA is included as the average.

* Compliance is determined based on a locational running annual average (LRAA); the highest LRAA is included as the average.

Lead and Copper Action Levels at Residential Taps

Chemical	Action Level (AL)	Public Health Goal	90th Percentile Value	Sites Exceeding AL/ Number of Sites	AL Violation?	Typical Source Of Chemical
Lead (ppb)	15	0.2	ND	0 / 30	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	1.3	0.3	0.61	0 / 30	No	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits

Every three years, at least 30 residences are tested for lead and copper at the tap. The most recent set of 30 samples were collected in July 2024. Lead was detected in 1 home; none exceeded the Action Level. Copper was detected in 28 homes; none exceeded the Action Level. The regulatory Action Level is the concentration at which, if exceeded in more than ten percent of the homes tested, triggers treatment or other requirements that a water system must follow. The Yorba Linda Water District complied with the lead and copper Action Levels.

About Yorba Linda Water District

Providing customers with high-quality, reliable drinking water is the District's top priority. The water we provide is safe and meets all drinking water quality standards set by both the State and Federal government.

YLWD has a robust water system with 14 reservoirs providing a total storage capacity exceeding 57 million gallons and 12 booster pump stations to distribute water through more than 350 miles of water mains to approximately 81,000 customers. The District operates 10 groundwater wells that are located at, or adjacent to, our headquarters.

We are dedicated to providing the best and most economical water and sewer services to our customers. YLWD consists of skilled professionals in the water industry who work dilligently to ensure our community has high-quality drinking water. It takes a dedicated team of 82 employees who are there for you 24/7, 365 days a year.

^{***} Chemical is regulated by a secondary standard to maintain aesthetic qualities (color, odor, and taste).

Investing in Criticial Infrastructure

The Yorba Linda Water District continually invests in its infrastructure valued at \$1.34 billion to meet the needs of its customers. The District's updated Water Master Plan provides a roadmap and a list of system improvements to optimize the use of groundwater and imported water. The plan includes rehabilitation of existing wells, pump stations, reservoirs, water pipelines, and the construction of new facilities to enable the District to continue providing safe and reliable drinking water to the homes and businesses in our service area. Projects recently completed include the following:

Hidden Hills Booster Pump Station (\$2.5M)

The recent enhancements to the Hidden Hills Booster Pump Station included the installation of a high-capacity pump that doubled the station's pumping capacity from 1,800 gallons per minute to 3,600 gallons per minute and a new 350-kilowatt natural gas back-up generator, which significantly improved the station's reliability in the face of challenges such as wildfires. Additional modernization efforts included the complete replacement of the flow meter, upgrades to meet current building codes, and substantial site improvements, such as enhanced security measures and landscaping.

Camino de Bryant Waterline Replacement Phase I (\$1.57M)

The Ductile Iron Pipe (DIP) installed in the eastern part of our service area experienced numerous breaks due to the corrosivity of the soil. The District is replacing the DIP with polyvinyl chloride (PVC) pipe in several phases. Approximately 2,315 feet of 8-inch DIP was replaced in the first phase on Mount Shasta Way and Smokey Mountain Way.

Pressure Regulating Stations (PRS) Rehabilitation Projects (\$1.28M)

YLWD's service area has elevations that vary from approximately 250 feet to 1,390 feet above sea level. As a result, the District needs to maintain multiple pressure regulating stations to regulate the amount of pressure in the water system and maintain full flexibility

for transferring water throughout the system. The District identified pressure regulating stations that required replacement due to operation and maintenance issues. The PRS that were replaced include: Applecreek, Paseo del Prado, Willowbrook, and Stone Canyon.

Well 19 Rehabilitation (\$276K)

As part of the District's continuing Rehabilitation & Replacement (R&R) Program, wells are rehabilitated to extend their useful life, improve efficiency and restore capacity. Well 19 improvements included the installation of a new

pump, replacement of damaged parts, and lowering the pump setting from 220 feet below ground surface to 240 feet to improve water quality. Well 19 pumps groundwater from the Orange County Groundwater Basin into the District's system and allows for maximum use of groundwater which is less expensive than imported water.

Investing in projects like these enhances water delivery capabilities, improves operational efficiency, and reduces interruptions in service, even during emergencies. Through these investments, Yorba Linda Water District reaffirms its commitment to meeting the community's water needs while embracing sustainability and resilience for the future.

This report contains important information about your drinking water. Please contact **Yorba Linda Water District** at 1717 E. Miraloma Ave, Placentia, CA 92870 or (714) 701-3000 for assistance in other languages.

Este informe contiene información muy importante sobre su agua para beber. Favor de comunicarse **Yorba Linda Water District a 1717 E. Miraloma Ave, Placentia, CA 92870** o **(714) 701-3000** para asistirlo en español.

本報告包含閣下飲用水嘅重要訊息。 如需廣東話垂詢,請聯絡 Yorba Linda Water District, 1717 E. Miraloma Ave, Placentia, CA 92870。

这份报告含有关于您的饮用水的重要讯息。请用以下地址和电话联系 Yorba Linda Water District 以获得中文的帮助: 1717 E. Miraloma Ave, Placentia, CA 92870, (714) 701-3000.

這份報告含有關於您的飲用水的重要訊息。請用以下地址和電話聯繫 Yorba Linda Water District 以獲得中文的幫助:1717 E. Miraloma Ave, Placentia, CA 92870, (714) 701-3000.

이 보고서는 당신의 식수에 관한 중요한 정보를 포함하고 있습니다. 한국어로 된 도움을 원하시면 Yorba Linda Water District, 1717 E. Miraloma Ave, Placentia, CA 92870, (714) 701-3000 로 문의 하시기 바랍니다.

Questions about your water?

Contact our Water Quality Division at (714) 701-3000 or email us at waterquality@ylwd.com.

A copy of this report is available at www.ylwd.com/wqr where you will find more information about YLWD's water quality.

1717 E Miraloma Avenue, Placentia, CA 92870 (714) 701-3000 • www.ylwd.com
Follow us on social media for District news,
upcoming tours, and more!

@YLWD @yorbalindawaterdistrict